1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
|
corr = x_data["NOX"].corr(y_data["price"])
print(corr)
x=data[["NOX"]]
y=data['price']
data.plot(x='NOX',y='price',kind='scatter')
lrModel=LinearRegression()
lrModel.fit(x,y)
a = lrModel.coef_[0]
b = lrModel.intercept_
X = np.linspace(0,1,10)
Y = a*X+b
plt.figure()
plt.plot(X,Y)
plt.scatter(x=data['NOX'],y=data['price'])
s = lrModel.score(x,y)
print(s)
px = pd.DataFrame(
{'NOX':[0.4,0.5,0.6]}
)
p = lrModel.predict(px)
print(p)
|